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Effects of viscous damping on mass transport velocity in a two-layer fluid system 
are studied. A temporally decaying small-amplitude interfacial wave is assumed to 
propagate in the fluids. The establishment and the decay of mean motions are 
considered as an initial-boundary-value problem. This transient problem is solved 
by using a Laplace transform with a numerical inversion. It is found that thin 
‘second boundary layers’ are formed adjacent to the interfacial Stokes boundary 
layers. The thickness of these second boundary layers is of O(E’/’) in the non- 
dimensional form, where E is the dimensionless Stokes boundary layer thickness 
defined as E = f8 = f (20/8)’/’ for an interfacial wave with wave amplitude d, 
wavenumber f and frequency 6 in a fluid with viscosity 0. Inside the second 
boundary layers there exists a strong steady streaming of O(a2c-’/2), where a = f d  is 
the surface wave slope. The mass transport velocity near the interface is much larger 
than that in a single-layer system, which is O(a2) (e.g. Longuet-Higgins 1953; Craik 
1982). In the core regions outside the thin second boundary layers, the mass transport 
velocity is enhanced by the diffusion of the mean interfacial velocity and vorticity. 
Because of vertical diffusion and viscous damping of the mean interfacial vorticity, 
the ‘interfacial second boundary layers’ diminish as time increases. The mean motions 
eventually die out owing to viscous attenuation. The mass transport velocity profiles 
are very different from those obtained by Dore (1970, 1973) which ignored viscous 
attenuation. When a temporally decaying small-amplitude surface progressive wave 
is propagating in the system, the mean motions are found to be much less significant, 
O(a2). 

1. Introduction 
Mass transport, a steady Lagrangian current, is generated by wave motions and 

is important in determining the migration of pollutant in fluid and the transport of 
sediment near the seabed. The mass transport velocity of small-amplitude interfacial 
waves in a two-layer fluid system was first calculated by Dore (1970) using the method 
of matched asymptotic expansions. The fluid system consists of two immiscible fluids 
with different densities and viscosities. Dore introduced boundary layers in the 
neighbourhood of the interface, whose thicknesses were assumed to be much larger 
than the wave amplitude, i.e. 8 >> d. Usin8 a Cartesian coordinate system, he found 
that the mass transport velocity was of O(k&’/$), where f is the wavenumber. Hence, 
the mass transport in the interfacial waves is much greater than that in a single-layer 
fluid system (Longuet-Higgins 1953), which is of O(~2i?2) .  Of course Dore’s approach 
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breaks down if d + 8. Later, Dore (1973) re-examined this problem by using the 
curvilinear coordinate system originally introduced by Longuet-Higgins (1953) to 
describe the motions in the interfacial boundary layers, but the conclusion remained 
the same. The second restrictive assumption used in both of Dore’s papers is that 
the viscous attenuation can be ignored. Although, the effects of the wave amplitude 
and viscous damping on mass transport have been studied by many researchers for a 
single-layer system (e.g. Liu & Davis 1977; Craik 1982), no study has been performed 
for interfacial waves. It is not clear what is the order of magnitude of the mass 
transport velocity in a two-layer fluid system. 

In this paper, the effects of viscous damping on the mass transport velocity are 
studied for a two-layer fluid system with a two-dimensional small-amplitude interfacial 
progressive wave. The wave motions are assumed to decay slowly in time because of 
viscosity. Both fluids are assumed to be immiscible, and a discontinuity of viscosity and 
density exists on the interface. Perturbation solutions in terms of wave slope a = kd via 
a boundary layer approach are sought. The thicknesses of the Stokes boundary layers 
adjacent to the free surface, the interface, and the bottom boundary are assumed 
to be of the same order of magnitude as the wave amplitude, i.e. O ( 8 )  = O(d).  
For wave motions with frequency a in a fluid with viscosity 0 ,  the Stokes boundary 
layer thickness is defined as 2 = (2t/8)”’. The curvilinear coordinate system of 
Longuet-Higgins (1953) is adopted to describe the fluid motions inside the Stokes 
boundary layers. To consider the on-set of the mean motions in the core regions 
outside the Stokes boundary layers, an initial-boundary-value problem is formulated 
and is solved by using a Laplace transform with a numerical inversion. Owing to 
the balance between diffusion and inertia forces the mean velocity (and vorticity) is 
confined inside the thin layers of O(e’/’) adjacent to the interface, where F = 6, and 
a strong steady streaming of O(a2e-’/2) exists. These ‘second boundary layers’ are 
similar to the outer layers reported by Stuart (1963,1966). But the laters are generated 
by the balance between viscous diffusion and convective inertia, and exist only when 
the steady-drift Reynolds number is much greater than 1, i.e. R, oc ( c r / ~ ) ~  >> 1. Unlike 
Stuart’s outer layers, which are steady layers of O(E/a) ,  the second boundary layers 
found in present study are unsteady, and their thickness is determined by viscous 
attenuation and viscous diffusion. The viscous attenuation is assumed to be of the 
same order of magnitude as the wave slope i.e. O ( E )  = O(a). This corresponds to 
R, = O( 1). But in the case of progressive waves, convection nonlinearity for the mean 
motions vanishes, so that the steady-drift Reynolds number Rs does not play a role. 
The mean motion begins to develop after the establishment of the Stokes boundary 
layers near the free surface, the interface and the bottom boundary due to viscosity. 
Because of vertical diffusion and viscous attenuation of the mean interfacial vorticity, 
the thin secondary boundary layers diminish as time increases. The mass transport 
velocity in the system eventually dies out after a long time. The mean motions of a 
surface progressive wave propagating in a two-layer fluid system are also examined. 
The leading-order mean velocity is found to be of O(a2), much smaller than that of 
an interfacial wave, O(a2e-’/2).  The mean velocity profiles are similar to that of mean 
motions of O(a2) of an interfacial progressive. Second boundary layers exist adjacent 
to the Stokes boundary layers. 

In $ 2  the formulation of interfacial wave motions in a two-layer fluid system is 
given. The leading-order solutions including the irrotational motions in the core 
regions and the associated rotational motions in the boundary layers have been 
obtained by Dalrymple & Liu (1978). For completeness, these results and the viscous 
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damping coefficient are briefly summarized in $3.  The governing equations and 
boundary conditions for the mean Eulerian drift velocity inside the Stokes boundary 
layers as well as in the core regions are presented in $4. The solution procedures for 
obtaining the mass transport in the core regons are also described. The solutions are 
first compared with those obtained by Craik (1982) for a single-layer fluid system. 
In this special case the mean velocity is of O(cr2). Excellent agreement between 
Craik's solutions and the present results is obtained. Numerical results are then given 
for two-layer fluid systems with or without mean pressure gradients. In both cases 
numerical results show clearly the existence of the second boundary layers adjacent 
to the Stokes boundary layers. The magnitude of the mass transport is indeed of 
O ( U ~ ~ - ' / ~ ) .  Finally the mass transport velocity of a surface wave is investigated, and 
some numerical results are presented. 

2. Formulation 
Consider a two-dimensional progressive interfacial wave train propagating in a 

two-layer fluid system with a discontinuity of density and viscosity on the interface. 
The positive 2-axis is in the direction of wave propagation and the positive 2-axis is 
pointing upwards from the mean level of the interface. The mean water depths for 
each layer are k), r = 1,2. The density of the upper fluid layer, $('), is smaller than 
that in the lower layer, i.e. $(I) c $(2), and they are of the same order of magnitude, 
i.e. $(2)/$(1) = O( 1). It is also assumed that the wave motion is a stable laminar flow. 
The wave motion is periodic in time with a frequency 6 and in the %direction with a 
wavenumber &. The leading-order interfacial displacement, g, and the leading-order 
free surface displacement, 2, are assumed to be sinusoidal in shape and of the same 
order of magnitude. 

Using the Cartesian coordinates (?,2), we write the equations of motion as 

+ - 4 ( r )  = 0, 

t is time, 4($ = ( a ( r ) ,  w A ( r )  ) , p  A(r )  ,$ ( and G @ )  denote fluid velocity, dynamic pressure, 

(2-2) 
where the su erscript r = 1 or 2 denotes the variables in the upper or the lower layer, 

density and kinematic viscosity, in each fluid layer, respectively. A stream function 
I$@) is defined such that 

which satisfies the continuity equation, (2.2). By adopting non-dimensional variables 
according to the following normalizing schemes : 

one can show that from the momentum equation, (2.1), the non-dimensional stream 
function satisfies 

where V2y(') = dr) represents the vorticity, and dr) = (2$20(r)/8)1/2 denotes the 
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dimensionless Stokes boundary thickness. The non-dimensional forms of ( 2.1) and 
(2.2) are 

(2.6) 

v q"' = 0. (2.7) 

aq") - + (q"' . V)q"' = -vp"' + ( 1/2)e"'2V2q''', 
at 

In most practical problems and laboratory studies the boundary layer thickness is 
much smaller than the typical wavelength, i.e. d') << 1. Therefore, flow motions are 
amenable to a boundary layer analysis. The whole fluid domain is divided into (i) 
the Stokes boundary layer regions of thickness O(e(')) adjacent to the free surface, 
interface, and bottom boundary and (ii) the core regions, exterior to these layers. 
The oscillatory vorticity is confined to those boundary layers. The boundary layer 
thickness in the oscillatory flows should also be much less than the corresponding 
fluid depth (& << Lk)). 

Because the boundary layer thickness is of the same order of magnitude as the 
wave amplitude, E < a, and the free surface and interface are moving, we use the 
orthogonal curvilinear coordinate system (s, n) introduced by Longuet-Higgins (1953) 
to describe the motions of fluids in the boundary layers adjacent to the free surface 
and interface, where s is tangential to the free surface or to the interface and n is 
normal to s pointing downwards. In terms of the curvilinear coordinates the velocities 
in the boundary layers can be expressed as 

where 

The dimensionless governing equation of the motions in the Stokes boundary layers 
can be written as, in terms of the curvilinear coordinates (Longuet-Higgins 1953; 
Dore 1978), 

(2.10) 

(2.11) 

where ly'(') = ~ ( ' ) - l y ( ~ ) ,  and I$~) is the stream function for the motion of the boundary 
surface itself ( n  = 0). 

Because wave motions decay slowly in time owing to viscosity and the development 
of second-order mean motions in core regions also depends on viscosity, there are two 
time scales involved in the flow motions: (i) the short time scale t for the oscillatory 
motions and (ii) the long time scale T = Pt, where /I is viscous damping rate of 
O(E(')) (see 9 3). Therefore, we can write the time derivative as follows: 

(2.12) a p t  --+ a p t  + pa/aT. 

For small-amplitude wave motions the wave slope is a small parameter, i.e. a << 1. 
In the present analysis, it is assumed that the wave amplitude is of the same order 
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of magnitude as those of the Stokes boundary layer thickness in each fluid layer, i.e. 
O(a) = O(e(')) = 0(d2)) << 1. The leading-order free surface displacement is written 
as 

[ = c~l( T )  exp [i(x - t ) ]  + 0(a2),  (2.13) 
where A( T) is the wave amplitude decaying slowly in time, and is to be determined. 

3. The leading-order wave motions 
To O(a), the effects of viscosity can be neglected in most of the flow domain except 

in the Stokes boundary layers adjacent to the free surface, interface and bottom 
boundary (e.g. Mei & Liu 1973). Outside the Stokes boundary layers flows are 
irrotational. Thus, we can write the leading-order stream function I&) as 

where cpy) and xy' are irrotational and rotational stream functions respectively, and 
$ exists only inside the boundary layers. 

3.1. The potential solutions 
The governing equation for the irrotational stream function cp1 is simply 

v2cpl') = 0. (3.2) 
The solutions of cpy) for a progressive wave propagating in a two-layer fluid system 
are readily obtained with appropriate boundary conditions. The details of the solution 
procedures are given in Dalrymple & Liu (1978). In terms of the present notation, 
the irrotational stream functions in each layer are respectively 

cp1(') = d ( T )  [cosh(z - h(')) + (j$/s2)sinh(z - h('))] exp [i(x - t ) ] ,  (3.3) 

(3-4) 
where is the gravitational acceleration, and c1 is a constant determined by fluid 
properties and wave parameters (see Appendix A). The dispersion relation and the 
corresponding interfacial displacement are also presented in Appendix A. 

3.2. The boundary layer corrections 
Substituting (3.1) into (2.5) or (2.9), employing (3.2) and neglecting higher-order terms, 
we obtain, in the Stokes boundary layers, 

cp1(2) = aA( T)clsinh(z + h(')) exp [i(x - t ) ] ,  

for each layer of fluid. In the boundary layers the tangential derivative of the 
rotational velocity is much smaller than its normal derivative. The rotational velocity 
vanishes outside the boundary layers. Therefore, the governing equations of rotational 
flows in the Stokes boundary layers adjacent to the free surface and interface can be 
simplified as 

Similarly, we have in the bottom boundary layer, in terms of the Cartesian coordinates, 
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The boundary conditions and the solutions for each boundary layer are discussed in 
the following sections. 

3.2.1. The free surface boundary layer 

For the free surface Stokes boundary layers the curvilinear coordinates, (s, n), are 
used with s being tangential to the free surface and n normal to s pointing into the 
upper layer, i.e. 

x = --s + O(a), z = (P) - n )  + O(a). 

Since the surface is not contaminated, the tangential stress along the free surface 
must vanish, i.e. correct to O(a) 

where the values of irrotational quantities on the free surface ( n  = 0) have been 
replaced by those on the mean level of the free surface (z  = I&')),  correct to O(a). The 
rotational flow of O(a) diminishes just beyond the boundary layer so that 

Integrating (3.6) and using (3.8) and (3.9), we obtain (e.g. Liu 1977) 

@ = a(1 + i)A(T)e(') exp [-(I - i ) n / ~ ]  exp [-i(s + t ) ] .  (3.10) 
an 

3.2.2. The interfacial boundary layers 

interface and n is normal to s pointing into the lower layer, i.e. 
In the Stokes boundary layers adjacent to the interface, s is tangential to the 

x = -s + O(a), z = -n + O(a). 

On the interface, n = 0, the tangential velocity and tangential stress are continuous. 
Thus 

(3.11) 

(3.12) 

where contributions from the irrotational solutions to the tangential stresses are of 
higher order, in terms of d'), and are neglected, and the values of the irrotational 
quantities on the interface are replaced by those on the mean level of the interface. 
At the outer edges of the interfacial boundary layers the rotational velocities vanish. 
Therefore 

(3.13) 

The solutions for the rotational stream functions in the interfacial boundary layers 
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can be obtained by integrating (3.6) with boundary conditions (3.11), (3.12) and (3.13), 
and can be expressed as (Dalrymple & Liu 1978) 

c l c y ) ~ ( ~ ) e x p  [(I - i)n/d')] exp [-i(s + t ) ] ,  
ax(1) A= 
an 

(2) 
= -acy)A(T)exp [--(I - i ) n / ~ ]  exp [-i(s + t ) ] ,  

an  

(3.14) 

(3.15) 

where cy) and cf) are constants, and their expressions can be found in Appendix A. 

3.2.3. The bottom boundary layer 

i.e. 
At the bottom (z = -h(2)), the rotational velocity exists to satisfy no-slip condition, 

(3.16) 

Just beyond the boundary layer, the rotational velocity vanishes up to O(a). Hence 

(3.17) 

Upon integrating (3.7) with boundary conditions (3.16) and (3.17), it is found that in 
this Stokes boundary layer (Dalrymple & Liu 1978) 

ax(2) 
aZ I -, o as (z + h(2))/e(2) -, 00. 

(2) 
= --crA(T)clexp[-(l - i)(z + h(2))/€(2)1 exp [i(x - t ) ] .  (3.18) aZ 

3.3. Viscous damping factor 
By considering the energy balance in the two-layer fluid system, Dalrymple & Liu 
(1978) found that the temporally decaying factor is 

A ( T )  = e-T, T = Pt, (3.19) 

where the non-dimensional decaying rate, /3, is 

The main contributions to the energy dissipation in a two-layer fluid system come 
from the Stokes boundary layers adjacent to the bottom and interface, O(dr) ) .  The 
dissipation in the free surface boundary layer and the core regions is of O ( F ( ~ ) ~ )  and 
O(E( ' )~ ) ,  respectively (Mei & Liu 1973). Because c1, c f )  and cf) are quantities of O( l) ,  
at leading order P is of O(&)). 

4. Mean Eulerian drift velocity 
Consider the on-set of motions in a two-layer fluid system. The first-order irrota- 

tional wave motions are established instantaneously, and, after a few wave periods, 
the oscillatory Stokes boundary layers are formed. The time needed for the estab- 
lishment of the first-order motions is just several wave periods. The mean motions 
in the core regions are induced by diffusion and advection of the mean velocity 
and/or vorticity at the outer edges of the Stokes boundary layers. In the case of 
a progressive interfacial wave, the mean motion is expected to be unidirectional, so 
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that the mean velocity and/or vorticity penetrate into the core regions only through 
viscous diffusion, which has a much larger time scale than a wave period. Therefore 
we can assume that the mean motions in core regions begin to develop just after the 
first-order wave motions, and the mean velocity and/or vorticity at the outer edges 
of the Stokes boundary layers are fully established. 

4.1. The Stokes boundary layers 
Because /3 is of O(E(')) (see (3.20)) and within the Stokes boundary layers 

the time-averaged (over a wave period) equation of motion in the Stokes boundary 
layers, in terms of the curvilinear coordinates, can be expressed as (Longuet-Higgins 
1953; Dore 1978) 

where the bar signifies that a quantity is averaged over a wave period, and the 
first-order oscillatory vorticity and the mean vorticity are 

respectively, with the curvature of the boundary ~1 = idy(,')/as. In the following 
subsections, we specify the boundary conditions for the mean drift field in each 
boundary layer. Solutions inside the boundary layers are then presented. 

4.1.1. The .free surface boundary layer 
Without any contamination on the free surface, the mean tangential stress also 

vanishes on the free surface. Hence, for a progressive wave we have(Longuet-Higgins 
1953) 

dl) -k ayj') = 0 on n = 0. 
an (4.3) 

Integrating the boundary layer equation (4.1) with the first-order solutions (3.3) and 
(3.10), we obtain 

where 81 = n/&. At the outer edge of the free surface boundary layer, 8, + 00, the 
second-order mean Eulerian vorticity is 

In terms of the Cartesian coordinate system, this vorticity is, correct to O(a2), 
equivalent to 
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This mean vorticity will penetrate into the core regions through diffusion and con- 
vection, and (4.6) serves as a boundary condition for the mean flow motion in the 
core region. 
4.1.2. The interfacial boundary layers 

On the interface, the mean Eulerian drift velocity and the mean tangential stress 
are continuous. Thus the following interfacial boundary conditions must be satisfied 
by the mean quantities, 

and 

Upon integrating the boundary layer equation (4.1) in the two interfacial boundary 
layers respectively, the mean Eulerian drift velocities in the interfacial boundary layers 
can be expressed as 

+ &In + 4) + O(a2d2)), (4.10) 

where O2 = n/c('), 03 = n / d 2 ) ,  and the u[) are constants from the first-order solutions 
(see Appendix A). df) and 4) are constants to be determined from the interfacial 
boundary conditions and by matching the boundary layer solutions with those in the 
core regions. From (4.9) and (4.10) the mean Eulerian drift velocities at the outer 
edges of the interfacial boundary layers are 

(4.1 1) 

(4.12) 

respectively. Equations (4.11) and (4.12) imply that as z + 0 the mean Eulerian drift 
velocities in core regions of the top and bottom layers, correct to O(a2), approach 
asymptotically, 

dl) = d(')z - dy)  - ~ ~ ( p y ) l  + O(a2c(')), (4.13) 
z=o 

1 

(4.14) 
respectively. 
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one can readily show that 
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Substituting (4.9) and (4.10) into (4.7) and (4.8), and employing (4.13) and (4.14), 

and 

Equations (4.15) and (4.16) represent the mean velocity and stress jumps, respectively, 
across the interfacial Stokes boundary layers. When the viscous damping is neglected, 
these results agree with those obtained by Dore (1973). Equation (4.16) demonstrates 
that at the outer edges of the interfacial Stokes boundary layers the mean velocity 
gradient is of O ( a 2 / d 2 ) ) .  

4.1.3. The bottom boundary layer 

By requiring the no-slip condition at the bottom for the mean motions, i.e. 
In the bottom boundary layer, the Cartesian coordinate system (x, z )  can be used. 

(4.17) 

and 

~ + finite as ( z  + /I(~))/. + 00, (4.18) 

and integrating (4.1) the mean Eulerian drift velocity is obtained in the bottom 
boundary layer: 

a@) 
d Z  

q 1 2 2 2  = 2a c , ~  ( T )  { - (1 - i)e4exp[-(l - i)e4] 
a Z  

+(2 + i) ( 1 - exp[-( 1 - i)S,]) + $ ( exp[-( 1 - i)&] - 1) } , (4.19) 

where 64 = ( z  + l ~ ( ~ ) ) / e ( ~ ) .  At the outer edge of the bottom Stokes boundary layer, the 
mean Eulerian drift velocity is 

#) = +2C$42( T ) .  (4.20) 

This result is used as a boundary condition for the solution in the core region of the 
bottom layer at z = -h('), correct to O(cr2). 

4.2. The core regions 

q"' = $1 + p ,  (4.21) 

where #") and @') are the mean and oscillatory velocity components, respectively. 
The oscillatory component qCr) can be expanded, in terms of the wave slope a, as 

p = 41') + gr) + 0 ( ~ 3 ) ,  (4.22) 

We now write the velocity q as 
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where i$' = O(aj), j = 1,2, ..., and the tilde denotes the oscillatory component. In 
the core regions outside the Stokes boundary layers, the leading-order motions are 
irrotational wave motions, i.e. qy)  = ijy'. The equations for the oscillatory velocity of 
O(ct2) are 

(4.23) 

v - &) = 0, (4.24) 

where O(a) = O ( p )  = O ( d )  has been assumed. Because the first-order solutions are 
in the form of 

ijf) = A ( T ) P ~ )  exp[i(x - t ) ] ,  (4.25) 

4;) can be expressed as, by (4.23), 

ijr) = A(T)Q;), exp[i(x - t ) ]  + A'(T)Q:: exp[2i(x - t ) ] ,  (4.26) 

where Q, ,Q,, and Q!: are functions of z only. Substituting (4.26) into (4.23) 

and taking the curl of the resulting equation, we find that Q:: and 8;; are also 
irrotational, i.e. 

(4.27) 
- ( r )  - ( r )  

The time-averaged (over a wave period) equation of motion can be obtained, by 
employing (4.25), (4.26) and (4.27), as 

- ( r )  - ( r )  

V x Q2,, = 0, V x Q2,2 = 0. 

a') + 8". V$' + V$r) - 1 ( r ) 2 V z + r )  = -'A2( T)V (QY)*  . QC) + O(a4), (4.28) 8,, 2c 4 2 

v . p  y o ,  (4.29) 

where * denotes the complex conjugate. Note that the viscous diffusion in (4.28) must 
be balanced by the leading order of the inertial force, the first term on the left-hand- 
side, so that the solutions of the mean motions can be matched with the boundary 
conditions on the mean levels of the free surface and interface, and at the outer edge 
of the bottom Stokes boundary layer. Equation (4.28) suggests that just outside the 
Stokes boundary layers there are thin boundary layers of O(C( ' )~ - ' /~ )  = O ( C ( ~ ) ' / ~ ) .  
In these second boundary layers viscous diffusion is still important for the mean 
motions. Away from these second boundary layers in the core regions, the viscous 
diffusion term in (4.28) can be neglected. 

From (4.25) and (4.26), it is clear that the nonlinear forcing term in (4.28) is 
independent of x. The mean velocity and/or vorticity at the mean levels of the free 
surface and interface, and at the outer edges of the bottom Stokes boundary layer, 
(4.6), (4.13), (4.14) and (4.20), are also independent of x.  Therefore, we can expect that 
the mean Eulerian drift velocity in the entire system be uniform in the x-direction. 
Furthermore the normal component of the mean velocity is zero up to O(a2)  at the 
mean levels of the free surface and interface, and at the outer edge of the bottom 
boundary layers, because the free surface, the interface and the bottom boundary are 
all material surfaces. The vertical component of the mean velocity, i?), must vanish 
in all the core regions by the continuity equation (4.29) and thus the convection term 
on the left-hand side of (4.28) disappears. By differentiating the vertical component 
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of (4.28) with respect to x, we obtain 

J. Wen and P. L.-F. Liu 

a 2 p  
-- - 0. 
azax 

(4.30) 

Hence, the mean horizontal pressure gradient is constant throughout each of the core 
regions. Finally the governing equations for the second-order mean Eulerian drift 
velocity outside the Stokes boundary layers can be simplified as 

(4.31) 

i$r) = 0, (4.32) 

where Tr'( T) denotes the mean horizontal pressure gradient, which is a function of 
slowly varying time T and depends on the system conditions. 

When the system is open and infinitely long in the direction of wave propagation, 
the mean pressures gradient can be assumed to vanish in the entire system, so that 

(4.33) 

When the system is very long but with a closed end, mean pressure gradients are 
established and so that the net mass flux across the cross-section normal to the 
direction of wave propagation is zero for each layer of fluid (Longuet-Higgins 1953), 
i.e. 

(4.34) 

where urn is the mass transport velocity (or Lagrangian velocity) in the core regions, 
and can be expressed as the total of the mean Eulerian velocity and the Stokes drift, 
up to O(a2) (Longuet-Higgins 1953), 

(4.35) 

The Stokes drift velocities in the core regions are readily obtained by the first-order 
potential solutions, (3.3) and (3.4), 

uj') = ;a2A2( T) { [ 1 + (pi/82)2] cosh 2(z - h(')) 

+ 2 sinh2(z - h(')) , 0 < z d h('), (4.36) 1 
u : ~ )  = ;a2A2( T)c: cosh 2(2 + h"), 0 2 z 2 -h('). (4.37) 

Hence the mean pressure gradients in each layer can be found from the zero-net-flux 
conditions, (4.34), after the mean Eulerian velocity has been solved. 

To find the distribution of the mean flow in the core regions of both the fluid 
layers, it is necessary to solve (4.31) and (4.32) as an initial-boundary-value problem. 
The boundary conditions on the mean levels of the free surface and interface, and at 
the outer edge of the bottom boundary layer are defined by (4.6), (4.15), (4.16) and 
(4.20), respectively, for T 2 0. Since the mean motions in the core regions develop 
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just after the establishment of the Stokes boundary layers, the initial conditions can 
be defined as 

(4.38) 

(4.39) 

By (4.16) the mean velocity gradient, adr ) /dz ,  is of O(a2 /d2) )  at the outer edges 
of the interfacial Stokes boundary layers. Equation (4.31) shows that adjacent to the 
interfacial Stokes boundary layers a /az  = O ( F ( ~ ) - ' / ~ )  for the mean velocity. Therefore, 
the leading-order mean velocity must be of O(a2e(2)-1/2). We now express the mean 
velocity in the following form: 

ijw = a 2 e ( 2 ) - 1 / 2 i q 2  + + o(a2)* (4.40) 

Hence, the initial-boundary-value problems for the mean motions in the core regions 
can be summarized as follows: 

dl) = 0 for T < 0, h(') > z > 0, 

d2) = 0 for T < 0, 0 > z > -h(2). 

O(42e(2)--1/2) 

with 

(4.41) 

(4.42a) 

0 ( a 2 )  

with 

$j2 = qj2 on z = 0, (4.42b) 

(4.43) 

(4.44a) 

(4.44c) 

(4.444 
(4.44e) 

(4.44A 
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4.3. Solutions 
4.3.1. Transformed solutions 

transform. The transformed variables are 
The time derivatives in (4.41) and (4.43) can be removed by means of Laplace 

@j2 = $j2e-STdT, $j2 = 1 zj2(T)e-”dT, (4 .45~)  

(4.45b) 

It is understood that s is a transform variable hereafter, not the curvilinear coordinate 
as before. The transformed equations of (4.41) and (4.43) are ordinary differential 
equations, and can be readily solved analytically with transformed boundary condi- 
tions from (4.42a)-(4.42d) and (4.44a)-(4.44d). The transformed solutions of the mean 
velocities are 

a, co 

m a, 

$1 = d --@) u2 e -sT dT, 8) = 1 z’(T)e-sTdT. 

where y(‘) = (28)’/2 /I&), and Dt), Dt), Dt) and Dt) are constants determined by the 
boundary conditions and the system conditions (see Appendix B). 

The transformed forms of the mean Eulerian velocity at the outer edges of the 
interfacial Stokes boundary layers, (4.13) and (4.14), can be written as 

~’ = Dp)z - D!), (4.48) 

where 

The transformed solutions, (4.46) and (4.47), in the core regions should match with 
(4.48) at the outer edges of the interfacial Stokes boundary layers, z = 0. By employing 
the method of matched asymptotic expansions, we obtain 

By (4.49), (4.50), (4.9) and (4.10) , we can conclude that inside the interfacial Stokes 
boundary layers, where n is of O(&)), the leading order of the mean Eulerian velocity 
is O(a2d2)-1/2)  and it is constant across the interfacial boundary layers. It is clear 
from (4.42~) that this leading-order mean velocity is induced by the mean Reynolds 
stress in the interfacial boundary layers. 

4.3.2. Laplace transform inversion 
To find the physical mean velocity, the inverse transform of solutions (4.46) and 

(4.47) must be performed. Because an analytical transform inversion of such compli- 
cated solutions is impossible, the ‘collocation’ inversion method of Schapery (1962) 
is used for the numerical transform inversion. Following Schapery (1962), Rizzo 
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& Shippy (1970) and Young & Liggett (1977), we approximate the physical mean 
velocity at a fixed spatial point by a finite Dirichlet series 

j=l 

where a:) and by) are constants to be determined. A necessary and sufficient condition 
for a function to be expandable in a convergent Dirichlet series is that the integral 
of the square of the function over all positive T exists. In the present analysis, the 
evolution of the mean velocity in the core regions is assumed to satisfy this condition. 

Equation (4.51) is transformed and multiplied by s to yield 
J 

S W ( S )  = c 
j=l 1 + bj"/s '  

(4.52) 

If the by) are chosen by some means, then J values of s can be selected so that (4.52) 
represents J equations in the undetermined coefficients, a:). The error can be nearly 
minimized by choosing by) to be equal to s, (Schapery 1962), i.e. 

(4.53) 

If @(s) versus logs is plotted, the significant range of s needed in the inversion 
scheme is where s$)(s) shows a definite variation. Numerical experience (Schapery 
1962; Rizzo & Shippy 1970; Young & Liggett 1977) has shown that optimal results 
are achieved by selecting the sj  in a geometric sequence, i.e. Sj+l/Sj = 1, where I is 
a fixed ratio. The upper and lower bounds of sj are selected from the plot and the 
ratio, 1, is fixed by choosing J, or vice versa. The accuracy is generally increased by 
choosing a large J. Thus J simultaneous linear equations in aj are formed: 

(4.54) 

4.3.3. Numerical results and discussion 
In order to check our analysis and numerical method, we first simulate a single- 

layer problem by letting j3(2)/j3(1) = 1012,e(1) = d2) = 0.001,h(') = h(2) = 1,f ( T )  = 
-(a f (T) = 0 in the present solutions. In this system the mean Reynolds stress 
vanishes at the outer edges of the interfacial Stokes boundary layers. Therefore the 
mean velocity of O(ct2d2)-1/2) does not exist and the leading-order mean velocity 
is of O(a2). Figure l(a) shows the typical significant range for s by plotting sV!!) 
versus s at z = 0.02, which is located in the interfacial second boundary layer. The 
significant range for s is clearly around O(1). The parameters for the numerical 
Laplace transform inversion are J = 20,A = 2 , s ~  = 256. A standard Gauss-Jordan 
elimination procedure is used to solve the resulting linear equations in ay), (4.54). 
The result yields a continuous solution in time T for the mean Eulerian velocity 
at each spatial point. The numerical inversion procedure is repeated for each vertical 
position in the core region of the top fluid layer. The resulting velocities in the 
bottom layer are very small and are neglected. The mean Eulerian velocity i$) at the 
outer edge of the interfacial Stokes boundary layer, z = 0, in the top layer, is shown 

--(I) 
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in figure l(b). It is decaying with time by a factor exp(-2T). The mean Eulerian 
velocity profiles in the core region of the top layer, outside the Stokes boundary 
layers, are shown in figure l(c) for T = 0.5,1,2, where #) has been scaled by the 
initial mean velocity at z = 0. The mean velocity or vorticity at the outer edges of 
the Stokes boundary layers, induced by the first-order wave motions and viscosity, 
begins to diffuse into the core region at the on-set of the mean motions. The second 
boundary layers are formed near the free surface and interface, adjacent to the Stokes 
boundary layers. Because of viscous attenuation of the mean velocity or vorticity 
source at the outer edges of the Stokes boundary layers and viscous diffusion of 
the mean velocity, the second boundary layers diminish as time T increases. As it 
diffuses into the centre of the core region, the mean velocity becomes significantly 
small. The analytical solutions of ii obtained by Craik (1982) for a single-layer 
fluid system with zero mean pressure gradient are also shown in figure l(b) and l(c) 
for comparison. The present numerical solutions show excellent agreement with the 
analytical solutions. 

To examine the transient problem of the mean motions in the core regions of a 
two-layer fluid system, we set $(2)/$(1) = 2, 0(2)/0(1) = 2, dl) = 0.001, h(2) = h(') = 1. In 
the present analysis, a small-amplitude interfacial wave, which corresponds the minus 
sign in the dispersion relation (A6), is assumed to be propagating in the fluids. The 
following values are chosen for the parameters of the numerical Laplace transform 
inversion, J = 20,A = 2 , s ~  = 128. The same numerical inversion procedure as that 
for the single-layer system is used to calculate the mean Eulerian velocities in both 
the layers. Figure 2 shows the results for a open system with zero mean pressure 
gradients. Figure 2(a, b) presents the evolution of the mean Eulerian velocity at the 
outer edges of the interfacial Stokes boundary layers. The mean velocity of O(a2), ii2, 
vanishes when T > 2. But the mean velocity of O(a2e(2)-1/2), i i 3 / 2 ,  persists much longer 
and disappears after T > 40. The resulting mean Eulerian velocity profiles in the 
core regions are shown in figure 2(c, d), at different time T. Strong second boundary 
layers are established adjacent to the interfacial and bottom Stokes boundary layers. 
The mean motions are mainly restricted to these second boundary layers. The mean 
velocity and vorticity diffuse into the core regions as time increases owing to viscosity. 
But because the mean velocity and vorticity sources at the outer edges of the Stokes 
boundary layers decay due to viscous attenuation, the mean velocities in the centres 
of the core regions are significantly smaller. The mean velocity of O(a2e(2)-1/2) is 
induced by the interfacial mean stresses. Therefore, second boundary layers for 
exists only adjacent to the interfacial Stokes boundary layers. The leading-order mean 
motions exists long (T  > 20) after the wave motions vanish (T > 2). 

The numerical results for mass transport velocity in a closed system are shown in 
figure 3. The same values as those in an open system are used for the numerical 
inversion parameters. The evolution of the mean velocity at the outer edges of 
interfacial Stokes boundary layers is similar to that in an open system. Second 
boundary layers for the mean motions are established adjacent to the Stokes boundary 
layers. The mean velocities in the centres of core regions are enhanced by viscous 
diffusion and the mean pressure gradients. The leading-order mean velocity persists 
longer and dies out eventually. 

The dominant mean Eulerian velocities in a two-layer system, O(a2e-1/2), are much 
larger than that in a single-layer system, O(a2), and persist much longer because of 
the gradual diffusion of the interfacial velocity and vorticity of O(a2c-1/2) from the 
interface into the core regions. The second boundary layer near the free surface is 
significantly weaker in a two-layer system. 
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FIGURE 1. An open system with $2)/)(1) = loL2, d2) = dl) = 0.001, h(I) = = 1: (a )  Transformed 
mean velocity on z = 0.02; ( b )  mean velocity i i2  at the outer edge of the interfacial Stokes boundary 
layer, z = 0, in the top layer; (c) mean velocity Ti2 in the core region of the top layer. o o o o 0, The 
numerical solutions, and lines are for the analytical solutions (Craik 1982). 
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~ 

a2 %i2 

FIGURE 2. Mean Eulerian velocity of an interfacial wave in an open system with 
jY2)/fi(l) = 2,0(2)/F(') = 2,&) = 0.001, h(') = h(2) = 1. (a) i i 2  on z = 0; (b)  ii3/2 on z = 0; (c) 
u2 in the core regions; ( d )  i i 3 / 2  in the core regions. - 

4.4. M e a n  motions of surface waves 

There exist two possible modes for wave motions in a two-layer fluid system, i.e. the 
surface wave mode and the internal wave mode, corresponding to the f signs used 
in the dispersion relation (A6). With the surface wave mode, the interfacial wave 
amplitude is smaller than that of the free surface, while the interfacial wave amplitude 
is larger in the internal wave mode motions. Up to now the analysis has been focused 
on the mean motions associated with an internal wave mode. It is also of interest to 
examine the mean velocities induced by wave motions of a surface wave mode in a 
two-layer fluid system with viscous attenuation. 



Mass transport of interfacial waves 249 

When a surface wave is propagating in a two-layer fluid system, the interfacial 
displacement is smaller than that on the free surface, and the difference of potential 
velocity across the interface becomes smaller. Therefore the rotational velocities in the 
interfacial Stokes boundary layers, which exist to ensure continuity of the tangential 
velocity and stress across the interface, are smaller. The interfacial Stokes boundary 
layers are much weaker than that of an interfacial wave. The magnitudes of the 
potential velocity difference across the interface and of the rotational velocity in the 
lower interfacial Stokes boundary layer on the interface n = 0 can be expressed as, 
by (3.3), (3.4), and (3.15), 

With the following typical values of wave parameters: $(2)/$(1) = 2, 0(2)/0(1) = 2, = 

0.001, h(2) = 0.5, figure 4(a) shows (uf) - u t ) )  and cf) versus h(I). The leading-order 
rotational velocities in the interfacial Stokes boundary layers are no longer of O(a) 
like that of an interfacial wave. Therefore the mean Reynolds stress, induced by the 
surface wave motions inside the interfacial Stokes boundary layer, is much smaller. 
The jumps of the mean velocity and of the mean velocity gradient across the interfacial 
Stokes boundary layers are of O(a2)  and O(a2d2)-1/2) respectively, as shown in figure 
4(b), i.e. 

DTS = (d2) - d’)) lzz0 = O(a2), (4.55) 

Inside the second boundary layers adjacent to the Stokes boundary layers, d / a z  = 
O ( F ( ~ ) - ~ / ’ ) .  So there is no driving force for the mean motions of O(a2e(2)-1/2) for a 
surface wave and the mean velocity of O(a2e(2)-1/2) vanishes in the whole system as 
can be concluded from (4.41) and (4.42). Because all the forcing terms for the mean 
motions in the core regions are from the boundary conditions at the outer edges 
of the Stokes boundary layers, (4.6), (4.20), (4.55) and (4.56), and correspond to the 
mean velocity of O(a2), the leading-order mean motions of a surface progressive wave 
must be of O(a2). The mean Eulerian velocity of a surface progressive wave can be 
readily obtained by solving the problem consisting of (4.43) and (4.44) with (4.44~) 
being replaced by 

The solution procedures are similar to those for the mean motions of an interfacial 
wave as described in 0 4.3. With details of the solution procedures being neglected, we 
present some numerical results in figure 4(c-f). The mean velocities at the outer edges 
of the interfacial Stokes boundary layers become significantly small when T > 2. The 
mean velocity profiles are similar to those of the mean velocities of O(a2) for an 
interfacial wave. Second boundary layers exists near the free surface, interface and 
bottom boundary, adjacent to the Stokes boundary layers. The mean motions in the 
system decay as T increases. 
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FIGURE 3. As figure 2 but for a closed system. 

5. Concluding remarks 
The effects of viscous attenuation on the mass transport velocity (or the mean 

Eulerian drift velocity) associated with an interfacial progressive wave, which is 
assumed to decay temporally due to viscosity, have been studied in a two-layer fluid 
system. The interface is considered to be immiscible and discontinuous in fluid 
properties. It is found that the strong interfacial mean Reynolds stresses are induced 
by the first-order wave motions. As mean interfacial velocity and vorticity diffuse 
into the core regions, outside the Stokes boundary layers, after the on-set of the 
wave motions, second boundary layers are formed near the interface, adjacent to the 
interfacial Stokes boundary layers. A strong steady streaming of O ( C ~ ~ E - ' / ~ )  exists in 
the second boundary layers. Because of viscous attenuation and vertical diffusion, 
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FIGURE 4. A surface wave with j3(2)/j3(1) = 2,0(2)/0(1) = 2, dl) = 0.001 : (a) cy) and (uf) - ut)) with 
h(') = 0.5; (b) D (aii/az) and Dii at T = 0 with h(2) = 0.5; (c) ii2 on z = 0 in an open system 
with h(') = hm = 0.5; ( d )  ii2 on z = 0 in a closed system with h(') = h@) = 0.5; (e) ii2 in the core 
re 'ons of an open system with h(') = h(2) = 0.5; (f) i i2  in the core regions of a closed system with 
h(f= h(2) = 0.5. 

the second boundary layers vanish as time increases. The mass transport velocities in 
the centres of the core regions are enhanced by the strong mean interfacial vorticity. 
The mean motions in the whole system are stronger and persist longer than that in 
a single-layer fluid system. The results are different from the solutions obtained by 
Dore (1970, 1973) who neglected the effects of viscous damping. Dore found that the 
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mass transport velocity is of O(a2e-') in the entire two-layer system and its vertical 
profiles are parabolic. Because O(e)  << 1, the mass transport velocity without viscous 
attenuation is much larger than our result, which is 0(a2e-'l2). However, Dore's 
analysis is restricted to the condition O(a) << O(e). When the wave amplitude is of 
the same order of magnitude as the Stokes boundary layer thickness, O(a) = O(e) ,  
Dore's analysis breaks down because his mass transport velocity has the same order 
magnitude as the leading-order wave motions. 

When a surface progressive wave is propagating in a two-layer fluid system, the 
leading-order mean velocity is of O(a2),  much smaller than that of an interfacial 
wave, O(a2e-'/2).  The mean velocity profiles are similar to those of mean motions of 
O(a2) of an interfacial progressive wave. Transient second boundary layers develop 
adjacent to the Stokes boundary layers. 

Viscous attenuation of the mass transport velocity associated with temporally 
decaying waves in a single-layer fluid system was studied as a quasi-steady problem 
by Liu & Davis (1977), whose solution exhibits some anomalous singularities. Craik 
(1982) re-examined the problem and treated it as an initial-boundary-value problem. 
The solution obtained by Liu & Davis (1977) was then proved to be a particular 
solution to the problem. The singularities were resolved. In the present study, the 
mass transport associated with a temporally decaying interfacial progressive wave in 
a two-fluid system has been studied as an initial-boundary-value problem in a similar 
way to Craik for a single-layer fluid system. Unlike a single-layer system, however, 
it is impossible to obtain an analytical solution of the mass transport velocity in a 
two-layer system because the mean motions in the two layers are coupled through 
the interfacial boundary conditions. Therefore a Laplace transform with a numerical 
inversion has been used to solve the problem. This approach is proved to be effective. 

The research reported here was supported by the National Science Foundation 
through a research grant (CTS-8902407). Computing facilities and funds were pro- 
vided by the Cornell National Supercomputing Facility (CNSF). 

Appendix A. The leading-order solutions 

coshhc') 
sinhhc2) c1 = - 1 - (kf/s2)tanhhc'), 

x { [ 1 - (&$/a2) tanh h(')] coth h(2) + tanh h(') - (&$/6')} , (A2) 

cp = ~ ~ ) / [ ( ~ ( 2 ) / ~ ( ' ) ) ( ~ ( 2 ) / ~ ( 1 ) ) 1 / 2 ] ,  (A 3) 

ur' = -sinhh(') + @f/i?')coshh('), uf )  = clcoshh(2). (A 4) 
The interfacial displacement is 

= A(T)coshh(')[l - (gi/i?2)tanhhc1)] exp [i(x - t ) ] ,  (A 5 )  

and the dispersion relation is 

- 82 
L + ( L ~  - ~ M N ) ' / ~ ]  , --=[- - ti 
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L = - (jj(2)/jj(1)) tanh(h(') + h") (1 + tanh h(') tanh h(2)) , 

253 
where 

M = ($2)/j3(1)) + tanh h(') tanh h(2), N = [ (jj(2)/jj(1)) - 11 tanh h(') tanh h('). 

1 
E5 

1 
E5 

Di') = - [El R sinh G(2) - El cosh G(2) + E2eG(') - E3eG(') cosh G(*)] , (B 3) 

Df) = - [REle"" + E2 cosh G(') - E2R sinh G(') + RE3eG(" sinh G(')] , (B 4) 
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